Search results for "Waveguide QED"

showing 8 items of 8 documents

Non-Markovian Dynamics of a Qubit Due to Single-Photon Scattering in a Waveguide

2018

We investigate the open dynamics of a qubit due to scattering of a single photon in an infinite or semi-infinite waveguide. Through an exact solution of the time-dependent multi-photon scattering problem, we find the qubit's dynamical map. Tools of open quantum systems theory allow us then to discuss the general features of this map, find the corresponding non-Linbladian master equation, and assess in a rigorous way its non-Markovian nature. The qubit dynamics has distinctive features that, in particular, do not occur in emission processes. Two fundamental sources of non-Markovianity are present: the finite width of the photon wavepacket and the time delay for propagation between the qubit …

---PhotonWave packetGeneral Physics and AstronomyFOS: Physical sciencesWaveguide QED; open quantum systems; non-Markovianity; quantum optics01 natural sciences010305 fluids & plasmasQuantum mechanics0103 physical sciencesMaster equationMesoscale and Nanoscale Physics (cond-mat.mes-hall)Waveguide (acoustics)quantum optics010306 general physicsQuantumPhysicsQuantum opticsopen quantum systemQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsScatteringnon-MarkovianityQubitWaveguide QEDQuantum Physics (quant-ph)Physics - OpticsOptics (physics.optics)
researchProduct

Exciting a Bound State in the Continuum through Multi-Photon Scattering plus Delayed Quantum Feedback

2019

Excitation of a bound state in the continuum (BIC) through scattering is problematic since it is by definition uncoupled. Here, we consider a type of dressed BIC and show that it can be excited in a nonlinear system through multi-photon scattering and delayed quantum feedback. The system is a semi-infinite waveguide with linear dispersion coupled to a qubit, in which a single-photon, dressed BIC is known to exist. We show that this BIC can be populated via multi-photon scattering in the non-Markovian regime, where the photon delay time (due to the qubit-mirror distance) is comparable with the qubit's decay. A similar process excites the BIC existing in an infinite waveguide coupled to two d…

Quantum opticsPhysics---Quantum PhysicsPhotonQuantum optics waveguide QED quantum non-Markovian dynamicsScatteringGeneral Physics and AstronomyPhysics::OpticsFOS: Physical sciencesQuantum entanglementQuantum Physics01 natural sciencesSettore FIS/03 - Fisica Della MateriaQuantum mechanicsQubitExcited state0103 physical sciencesBound state010306 general physicsQuantum Physics (quant-ph)ExcitationPhysics - OpticsOptics (physics.optics)
researchProduct

Atom-field dressed states in slow-light waveguide QED

2015

We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multi-photon dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide a both qualitative and quantitative description of the essential strong…

---Waveguide (electromagnetism)Field (physics)FOS: Physical sciencesPhysics::OpticsSlow light01 natural sciences010305 fluids & plasmasdressed states.0103 physical sciencesAtomBound statePhysics::Atomic Physics010306 general physicsPhysicsQuantum Physicsbusiness.industryWaveguide QEDatom-photon bound statePhotonicsAtomic physicsQuantum Physics (quant-ph)businesscoupled-cavity arrayExcitationMicrowaveWaveguide QED; coupled-cavity arrays; atom-photon bound states; dressed states.
researchProduct

Controlling Atom-Photon Bound States in an Array of Josephson-Junction Resonators

2022

Engineering the electromagnetic environment of a quantum emitter gives rise to a plethora of exotic light -matter interactions. In particular, photonic lattices can seed long-lived atom-photon bound states inside photonic band gaps. Here, we report on the concept and implementation of a novel microwave architecture consisting of an array of compact superconducting resonators in which we have embedded two frequency -tunable artificial atoms. We study the atom-field interaction and access previously unexplored coupling regimes, in both the single-and double-excitation subspace. In addition, we demonstrate coherent interactions between two atom-photon bound states, in both resonant and dispers…

quantumPhotonics:Física [Àrees temàtiques de la UPC]latticesFotònicaedgeGeneral Physics and Astronomylight-matter interactionsCircuit QED. Waveguide QED. Quantum information processing implementationsSettore FIS/03 - Fisica Della Materia
researchProduct

Erratum: Atom-field dressed states in slow-light waveguide QED [Phys. Rev. A93, 033833 (2016)]

2016

We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-…

PhysicsQuantum opticsatom-photon bound states.Field (physics)quantum opticQuantum mechanicsQuantum electrodynamicsAtomWaveguide QEDWaveguide (acoustics)Slow lightWaveguide QED; quantum optics; atom-photon bound states.Physical Review A
researchProduct

Emergence of non-Markovianity in the emission process of an atom in a half-cavity

2014

We study quantum non-Markovianity in the early stage of the emission process of a two-level atom coupled to a semi-infinite waveguide, where the waveguide termination behaves as a perfect mirror. Specifically, we restrict to the analysis of the process for times shorter than twice the time delay t_d, where t_d is the duration of a round trip along the atom-mirror path. We show the emergence of a threshold in the parameters space separating the Markovian and non-Markovian regions.

PhysicsQuantum PhysicsProcess (computing)FOS: Physical sciencesAtom (order theory)Markov processopen quantum systemsParameter spacenon-Markovianity open quantum systems spontaneous emission waveguide QEDCondensed Matter Physicsnon-MarkovianityAtomic and Molecular Physics and Opticssymbols.namesakePerfect mirrorwaveguide QEDQuantum mechanicsPath (graph theory)symbolsWaveguide (acoustics)Quantum Physics (quant-ph)spontaneous emissionQuantumMathematical Physics
researchProduct

Non-Hermiticity in Quantum Physics

2022

The field of non-Hermitian Physics has attracted great attention over the last 23years, both from the in the physical and mathematical communities. From the physical point of view, non-Hermiticity was regarded as a phenomenological tool to describe open quantum systems. Besides this, the rising interest in this field comes especially from the possible exploitation of exceptional points for quantum technologies, and from the exotic topology arising in periodic non-Hermitian systems, connected to the so called non-Hermitian skin effect. From the mathematical point of view, the range of possible topics to investigate has been wide open, as dropping an hypothesis of a theory makes the mathemati…

waveguide QEDNon-Hermitian PhysicQuantum OpticSettore FIS/03 - Fisica Della Materia
researchProduct

Dynamics of spontaneous emission in a single-end photonic waveguide

2012

We investigate the spontaneous emission of a two-level system, e.g. an atom or atomlike object, coupled to a single-end, i.e., semi-infinite, one-dimensional photonic waveguide such that one end behaves as a perfect mirror while light can pass through the opposite end with no back-reflection. Through a quantum microscopic model we show that such geometry can cause non-exponential and long-lived atomic decay. Under suitable conditions, a bound atom-photon stationary state appears in the atom-mirror interspace so as to trap a considerable amount of initial atomic excitation. Yet, this can be released by applying an atomic frequency shift causing a revival of photon emission. The resilience of…

Quantum opticsPhysicsCondensed Matter::Quantum GasesQuantum PhysicsWaveguide (electromagnetism)business.industryFOS: Physical sciencesAtomic and Molecular Physics and OpticsWaveguide QED spontaneous emissionPerfect mirrorAtomSpontaneous emissionPhysics::Atomic PhysicsAtomic physicsPhotonicsbusinessQuantum Physics (quant-ph)ExcitationStationary state
researchProduct